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Abstract—A procedure is presented for obtaining mixed, nonlinear variational principles for elastic
shells based on the intrinsic formulation of the shell equations. The applicability of the procedure
is demonstrated by developing specific principles for shells of weak curvatures and for circular
cylindrical shells in regular and extended forms. Other cases are also discussed. The principles are
developed within the scope of small-strain, large-rotation theory for shells under the Kirchhoff—
Love hypothesis and require the availability of curvature functions for the given classes of shells.
No other restrictions need be placed, except for those related to the geometries of the shells under
investigation. Specifically, subject to the limitation of small extensional strains, the displacements
and rotations may be large and no particular mode of shell behavior is postulated. The variational
functionals basically contain the strain energy of bending and the complementary energy of the
membrane force resultants. These functionals are formulated in terms of curvature and stress
functions and their Euler-Lagrange equations are those of normal equilibrium, Gauss compatibility
and associated boundary conditions. All may be nonlinear. Using the extended principle as a starting
point, approximate principles and equations are developed in Part II for the nonlinear, nonuniform
bending of orthotropic circular cylindrical tubes of finite length (extended Brazier effort). The semi-
membrane approximation, with membrane-type shear deformation retained, is used in the analysis,
plus some added restrictions of the Rayleigh—Ritz type on the curvature and stress fields. The results
can be used for problems involving tubes subjected to various beam and shell type boundary
conditions. The specific example of a clamped tube subjected to pure beam bending is calculated,
using solutions of the equations for weak nonlinearity and a Rayleigh method for strong non-
linearity. Application of some of the results to the nonlinear “local buckling” analysis of a finite-
length tube subjected to bending compare favorably with published results. Besides the interest in
the specific problem, this demonstrates the applicability of the mixed principle for obtaining direct,
approximate nonlinear solutions to useful ongoing problems, as a complement to more exact, but
cumbersome, finite element or series solutions.

1. INTRODUCTION

Nonlinear analysis is important to the efficient utilization of shell structures in engineering
applications and to the basic understanding of natural phenomena. Due to the smali value
of the ratio of the shell thickness to its surface dimensions (length L, radius R), strong
nonlinearities can occur even in the elastic range, and displacements which exceed the shell
thickness are very common. Nonlinearities are usually tied to the rotations of the shell
elements or, equivalently, to the changes in curvature k.5 = b,5— b, of its reference surface.
The extensional strains e,; = } (d,5—a,g) are small in the majority of engineering appli-
cations (rubber-like membranes are an exception). In the above, b,5 and a, are, respectively,
the curvature and metric tensors of the reference surface. An overbar denotes a quantity in
the deformed configuration.

The complexity of the nonlinear shell problem has led to the extensive utilization of
variational techniques. These are used for obtaining approximate direct solutions and for
deriving approximate forms of the basic equations. They also provide the basis for numerical
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algorithms. The virtual work theorem is the more basic one and is also applicable to inelastic
shells. The theorem of the total potential IT of the theory of elasticity (see, for example,
Washizu, 1982) is widely used in elastic shells, where the strain energy density U is usually
taken as a function of k,; and e, (in shear deformation theories, transverse shearing strains
are also included. These are expressed, in turn, in terms of displacements v, and w, which
are the field variables. Extended variational principles, where some of the field equations
are introduced as constraints with Lagrange mulitipliers, have also found important use.
The Hu-Washizu principle (Washizu, 1982) and the Hellinger—Reissner principle (Reissner,
1950, 1987; Pian and Tong, 1980) are important examples from the theory of elasticity.
For some recent applications of these and related principles in nonlinear shell theory, see
Stumpf (1979) ; Schmidt and Pietraszkiewicz (1981) introduced moderate rotation theories,
Pietraszkiewicz and Szwabowicz (1982) gave a large rotation Lagrangian formulation,
Atluri (1983) studied finite deformations, Schmidt (1984) considered large rotation, Libai
and Simmonds (1988) large deformations with one space variable, and Axelrad and Emmer-
ling (1990) vector forms, etc. In some of these formulations, some of the strain variables
are replaced with corresponding resultant stress variables #n* and/or m™ as the case
may be.

Displacements are convenient to use in nonlinear shell theory as long as they are small
(but finite). In cases of truly large displacements and rotations, the expression of I (v,, w)
becomes extremely complicated. In addition, the displacements, referred to an unrotated
configuration, lose their advantageous geometrical interpretation. The reason is that in the
Lagrangian displacement formulation, the undeformed metric and unrotated directions are
used, but the configuration with respect to which equilibrium is considered is that of the
deformed state. For recent advances in the Lagrangian displacement formulation, see
Pietraszkiewicz (1992, 1993).

At the other end of the spectrum lic the pure complementary principles which utilize
the stress resultants exclusively in the formulation. These pose many difficulties in the
nonlinear case. Examples of cases of nonlinear shell complementary principles were given
by Washizu (1980) for the Marguerre shallow shell problem and by Libai and Simmonds
(1988) for one-space-variable cases.

A method of approach to the nonlinear shell problem which foregoes the use of
displacements is the stress—rotation approach. Here, the field variables are the stresses and
a finite rotation “vector” (magnitude and direction). The rotation takes on the major
nonlinearities of the problem. Variational principles which are based on this approach were
given, for example, by Fraeijs de Veubeke (1972), Simmonds and Danielson (1972), Stumpf
(1979), Schmidt and Pietraszkiewicz (1981), Atluri (1983) and, for the one-space-variable
cases, by Libai and Simmonds.(1988). They may be considered as mixed principles since
both stresses and rotations are used in the principle and, in particular, in the energy function.

The principle to be discus::g\and applied here belongs to the category of mixed
principles, but replaces the finite rotation with a “curvature function” i, which, if available,
solves automatically the incremental Codazzi compatibility equations of surface theory,
while the incremental Gauss equation is introduced via a Lagrange multiplier f (which turns
out to be the corresponding stress function). The field variables in the principle are (i, f)
or, if preferred, (i, e,4, f). The latter possibility has a larger number of field variables, but
can be applied (in its virtual form) to inelastic shells as well as elastic ones.

In this paper, an “incremental” form of a universally valid equation is defined to be
the exact equation obtained by calculating its “change™ due to changes in its constituent
variables. Both changes are not necessarily small. See the explanation which follows eqn
(5) for the “incremental” Codazzi equation. The “incremental” Gauss equation, which is
derived by a similar process, is contained in eqn (17). In small extensional strain theory,
quadratic terms in the extensional strains may be omitted. Other shell theory researchers
have adopted similar equations (cf. Danielson, 1970; Koiter and Simmonds, 1973 ; Libai
and Simmonds, 1983 ; Pietraszkiewicz, 1989). For further discussion, see Koiter (1966},
especially pp. 19-20 and eqgn (5.10).

The direct use of k,z and e, as field variables places this approach within the framework
of intrinsic formulations of shell equations. The literature on these formulations is extensive.



Mixed variational principle—I 1005

For some recent contributions, see Koiter (1980), Libai (1981, 1983), Axelrad and Emmer-
ling (1988), and Pietraszkiewicz (1989).

The use of Y and f'is similar to the one adopted in some stress—curvature approaches
to shell analysis, with the normal displacement w serving as an approximate curvature
function. The latter finds its uses in nonlinear shallow shell equations and in some versions
of cylindrical shell analysis. It is not designed, however, for large deformations, where the
use of w is no longer valid for describing k. See the example in Part I1.

It will be assumed in Part II that the extensional strains are small to the extent that
nonlinear terms in these strains and their first derivatives can be neglected (some exceptions
can be incorporated into the theory). This makes the task of finding ¥ easier, since the
incremental Codazzi equations then become linear in k,; and in e,; separately ; mixed terms
of the e, k,; type do appear in the equations, but they are usually small compared with the
linear terms and can be neglected in most cases. For a more detailed proof, see the discussion
following eqn (7).

It is assumed in this study that the Kirchhoff~Love assumption holds, that the strain
energy density function U (k4 e,5)—measured per unit undeformed area of the reference
surface-—exists, and that the extensional strains, together with their first order derivatives,
are small. Subject to the last restriction, constitutive nonlinearity can be accommodated.
However, a linear orthotropic elastic material is assumed in the examples. Note that the
displacements and curvature changes are not restricted in magnitude. No specific mode of
shell behavior is postulated in the analysis, so that both membrane and bending modes can
be accommodated.

The analysis contains several related topics:

(a) A procedure is put forth whereby, given the availability of a “curvature function”
for a particular shell or class of shells, a nonlinear mixed variational principle for the
shell(s) can be constructed, subject only to the small-extensional-strain approximation and
otherwise unrestricted deformations. Several shell systems are discussed. The variational
functional is first constructed in terms of curvature function ¥, stress function f and exten-
sional strains e,, and is then reduced to two variables. The details are provided in (b).

(b} As a prototype case, the procedure is used for a detailed derivation of the mixed
principles for shells of weak curvatures (length L/mid-surface radius R « 1); see Section
2.1 for a more precise definition. Derivations of the Euler-Lagrange equations as well as
nonlinear boundary conditions are included.

(c) The principle is derived for cylindrical shells, which represent the class of quasi-
shallow shells (Gaussian curvature K 2 0). Extensional-strain terms are included in the
expressions for k,;. This yields a uniformly valid representation and avoids some of the
pitfalls of Donnell-Mushtari-Vlasov (DMV) type theories. For an exposition of DMV
theory, see Brush and Almroth (1975), chapters 5 and 6.

(d) An extended mixed variational principle for circular cylindrical shells is derived (in
Part II). It incorporates mixed terms of the kje,, type, thus facilitating the treatment of
special cases such as highly bent tubes.

(e) The extended principle is applied in Part II to the approximate nonlinear analysis of
finite-length orthotropic circular—cylindrical tubes subjected to nonuniform beam bending
moments and shear forces. The nonlinear behavior and collapse of infinitely long isotropic
cylindrical shells subjected to pure bending is known as the “Brazier effect.” Brazier (1927)
used a simplified energy approach for his analysis. Later, Reissner, in a series of papers
(Reissner, 1959, 1961 ; Reissner and Weinitschke, 1963), developed a more exact theory,
and many other studies have been made to improve on Brazier’s solution. The corresponding
finite-length case has been less extensively studied. Axelrad (1965, 1985), Emmerling (1984),
and Axelrad and Emmerling (1983) used the flexible shell assumption for formulating
equations and obtaining asymptotic and perturbation solutions. Calladine (1983) used an
assumed sine function in a simplified energy analysis of the simply supported flexible shell.
Antonenko (1981) studied the effect of curvature on cylindrical shell analysis. Stephens et
al. (1975) presented numerical results using the STAGS program. The bulk of the research
was confined to pure (uniform) bending. For a survey, see Axelrad and Emmerling (1984).

SAS 31:7-H
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In the present study, the general case is formulated in terms of the mixed principle. The
pure bending and nonuniform bending cases are considered. Use is then made of the semi-
membrane approximation, to further simplify the formulation, but retain the effects of
membrane shearing deformations.

Further approximations in the Rayleigh~Ritz sense reduce the problem to a nonlinear
ordinary differential system. An approximation solution of the clamped, finite-length tube
subjected to pure bending is given as an example.

Finally, it should be emphasized that the introduction is not intended as a survey of
either variational principles in nonlinear shell theory or tube bending problems. Its sole
purpose is to place the present study in its proper framework within these two areas of shell
analysis.

2. ANALYSIS

The starting point is the theorem of the total potential I, which is actually a stationary
value theorem in nonlinear elastic problems, It states, in effect, that a necessary and sufficient
condition for an equilibrium configuration to exist is 6I1 = 0, where the admissible set
consists of all displacement fields which satisfy the continuity requirements everywhere in
the body and on all of its boundaries.

An alternative method is to use k,; and e, (tensorial or physical components) directly
as field variables. This “intrinsic” formulation avoids the problematics of unwieldy strain—
displacement relations in the case of large deformations, and facilitates the direct use of
the small-strain approximation. However, in order to change to the intrinsic form, two
requirements must be met. (a) The potential of the external loads P must be expressible in
terms of e,g, k,5. This point will be discussed later (see also Koiter, 1980). (b) To assure the
continuity of the displacements, kg, e,, must satisfy the compatibility equations of surface
geometry. These are conveniently expressed in terms of the Codazzi and Gauss equations
of the surface, written in an incremental form (other forms of the continuity equations
are also available). Let L,(e,k,s), Li(e,s k,s) denote the nonlinear Codazzi and Gauss
incremental compatibility equations, respectively. These can be appended to I1 as
constraints, with Lagrange multipliers /* and f, yielding the enhanced potential :

nl(eaﬁikaﬂ,fas.f) = JL (U_faLa _fLB) d4+P (I)

{f* and f can be shown to constitute “stress functions” for the problem at hand). The
number of independent fields is now nine. While such an enhanced form may be useful for
some numerical methods, it should be useful to reduce it. One avenue of approach is to
equate to zero the coefficients of de,; and ok, in the expression for 6I1,. This provides six
equations expressing e,s and k,z in terms of (f*, f). If .5 and k.5 can be extracted in the
above and resubstituted into the function, a stress function formulation I, = IT, (f%, f)
would result. While this reduction is not feasible in the general case of large rotations and
large strains, its partial use in small-strain, finite-rotation theories has not been sufficiently
explored. Also, the use of IT as an extended intrinsic principle for numerical use and for
special purposes may be explored. A second method is to find general solutions to some,
but not all, of the compatibility equations, and thereby reduce the number of independent
fields. The latter approach is adopted in Part II.

A scalar function y such that k., (Y, e,;) satisfies the Codazzi incremental equations
identically (exactly or approximately) is termed a “curvature function.” Substitution of &,
into IT, yields

My (eu ¥, ) = _UA(U—fLs) d4+P, @

with five independent fields. The virtual form of the above can be used for inelastic shells.
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For elastic shells, a further reduction can be achieved by equating to zero the coefficients
of Je,s in the variational equation 6I1, = 0. This forms three equations for e,; in terms of
f (and ¥). Back substitution into I, yields

H3 = Hz[eaﬁ(dli f)s ws ﬂ’ (3)

which has y and fas two independent fields.

Regarding the external load potential, it will be transformed in Part II via partial
integration into a mixed/complementary potential P*. Hence, a detailed discussion of
possible forms of P will not be presented here.

The process depends on the ability to find ¢ for the given problem. Emphasis is put
on curvature functions which satisfy the (incremental) Codazzi equation :1

e” [koply — Bey (Kog + bos)] = 0. e))

Here, £” is the surface permutation tensor, the vertical bar denotes covariant differentiation
with respect to the undeformed geometry and B2 is the (incremental) Christoffel-symbol
tensor, which, for small strains, is given by

ﬂgy = egt?+egla_eay!e' (5)

Equation (4) can be obtained directly from the universally valid Codazzi equation &
(bupy — T8 bys) = 0 by replacing b, with (bg+k,p), T with (T95 + BZ,), and then subtracting
the original equation from the result.

Herein and in Part 11, tensorial operations will be related to the undeformed geometry.
If the deformation is inextensional (or nearly so), then

ek, 4l, = 0. (6)

Let the general solution of these two /inear equations be k% (). The solution for the case
of small extensional strain is

ko = k() +/uplen, )  (lim fip = 0)
€y 0. (7)

The dependence of f; on y is due to the mixed (nonlinear) terms B and ky; in the
Codazzi equations.

Within the scope of the small extensional strain approximation, it is now shown that
these terms are usually small compared with other terms in the Codazzi equations, and thus
may be normally suppressed there (exceptional cases will be discussed later). No other
qualifications as to the type of shell theory are needed. For purposes of this discussion, the
extensional strains are assigned the order of magnitude ¢ and other terms assigned the order
&%, such that 0 < a < 1. Thus, 0 < a < 1 is fractional order and « = 0 is order unity. The
small extensional strain approximation (as used in this paper) is restated to imply that
terms with a > 1 are suppressed in the field equations.

Nondimensional terms Rk,; (where R is a length measure of the undeformed surface)
may assume differing values of « < 1 which can even coexist in the same shell problem. (a)
In (mostly) membrane regions away from discontinuities, a ~ 1. (b) Fractional orders
(mostly a = 3) occur in many moderate rotation theories. (¢) Finally, « = 0 may occur in
strong inextensional deformations, near discontinuities, in some postbuckling problems,
etc. Evidently, if « = 0 in one region of the shell, f,; can be suppressed there, but an across-
the-board suppression can lead to erroneous results in other regions of the shell.

In cases (a) and (b), the Z,kgﬁ terms are of combined order o > 1 and can be suppressed
according to the small extensional strain approximation. In case (¢), they are of order 1,

+ For another approach to curvature functions, which is more general, but also more complicated, see Libai
(1967).
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but in this instance, they can be suppressed compared with the k.4 terms, which are now of
order zero. It follows that the f, ko, terms can be suppressed for the entire range of k,g, and
eqn (7) can be simplified to read

k. = k¥ +fis(e,)- (7a)

Koiter (1966) suggested the use of this form of the Codazzi equations in nonlinear theory;
see eqn (5.10) in his paper.

Exceptional situations may occur in case (c) but these can affect only the “membrane
correction” term f,5. For example, in the strong nonlinear bending of long tubes (Brazier-
type problems), the dominant circumferential curvature change k,, is of order « = 0, and
can be determined by eqn (7a). However, due to the long-shell effect, the secondary
longitudinal curvature k., is of order a = 1, so that the term ke, may be retained in the
expression for £, for improved accuracy in the expression for k,,. This modified procedure
will be used in Part II in the section on nonlinear bending of long tubes and may be regarded
as a part of the basic procedure presented herein. Another case where the retention of mixed
terms should be considered is in *‘two-scale™ problems, where smaller strains are superposed
on “‘large” initial stress resultants and strains,

Some geometrically nonlinear shell theories retain the mixed terms (ﬂﬁykoﬁ) in the
Codazzi equations. As examples, see Danielson (1970), Koiter and Simmonds (1973), Libai
and Simmonds (1983), and Pietraszkiewicz (1989). However, as has been shown here, a full
exploitation of the small extensional strain approximation makes this retention unnecessary
except for special cases. It was Koiter (1966) who first deleted the mixed terms from the
Codazzi equations, in addition to the quadratic extensional strain terms; see p. 20 of his
paper for eqn (5.10) and the accompanying discussion. The reduction of ks to a linear
combination of  and e,; bears only a superficial resemblance to the linearization of the
curvature—displacement relations, which is common to several geometrically nonlinear
theories, as discussed in Sanders (1963), since both reduce to linear expressions. However,
in those instances, the displacements must be small (but finite) and the rotations moderate,
whereas in the present case both ¥ and e,; may be highly nonlinear in the displacements;
V¥ is unrestricted and e,; must be of order a = 1, but its second derivatives may be of order
a = 0. This makes the present approach highly suitable for “large-rotation’ analysis, subject
to the restrictions imposed by the small extensional strain approximation.

In regions of large deformations (« = 0), approximations of the order of ¢ for f,; are
sometimes acceptable. These may range from minor approximations to total suppression
as in shallow shells and the DMV theory. In the latter situations, the normal displace-
ment w plays the role of a curvature function such as y, but this holds only for small displace-
ments.

To sum up this approach : since the general solution of the three nonlinear compatibility
equations is, in general, impossible to obtain, the approach adopted here is to obtain
solutions to two of the equations, and solve the third one in a variational sense by appending
it to the total potential. This third (Gauss) equation intermixes e,5 and y, so that e,z depends
on . This does not represent pure inextensional deformations. The latter would have
required the deletion of e,z from all three compatibility equations.

The form of k¥ for some classes of shells is as follows :

(a) Developable shells (cylindrical and conical surfaces, etc.): k¥ = i¥],5. This is
extended to shells of weak Gaussian curvatures (including shallow shells, DMV theory).
Also included are general shells with deformation patterns of wavelength A, such that
KJ1* « 1. Here, K is the Gaussian curvature of the undeformed middle surface.

(b) Spherical shells: k¥; = l,;+ Ka,g¢. This form, with extensions to the nonlinear
analysis of shells of slowly varying curvature KX, was introduced by Libai (1962). For further
applications, see Libai (1967), Lukasiewicz (1971) and Pietraszkiewicz (1989). For the
mathematically similar form of a membrane stress function, see Finzi (1934), Langhaar
(1953), Truesdell (1960), Duddeck (1964), etc.
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J+p are any particular symmetric integrals of the equations

Bﬂy[ﬁzﬂlv_bg(eoa|y+eﬂylu—eay|0)] =0. (8)

If the b,; are constants, they can be put inside the derivative signs and rearrangement
produces the more convenient “divergence form” ;

P (fup—bliews+ ey B, = 0, ®

where
B = ¢"ble,, (10)
is an invariant which vanishes for spherical shells and also if the principal directions for
strain and curvature coincide. In other instances, integral forms can be used (see example
for cylindrical shells). Equation (9) can be used for shells with slowly varying curvatures.
Extension to more general shells can also be considered, since this involves neglecting terms
O[(1/R%e,g] compared with O (k,4,), which is an acceptable approximation in most shell

theories.
The following are some specific cases:

(a) Shells of weak curvatures (plates, shallow shells, DMV theory). Here f,; = 0.

(b) Circular cylindrical shells. Here, the undeformed metric is Cartesian with respect
to the generators (x-direction) and hoop circles (s-direction). The mean radius of the
cylinder is “a”. There is no distinction between tensorial and physical components and
covariant derivatives reduce to partial derivatives. The equations are

1 1
(kxx - ;exx)s - <kx - ;)’xs))( =0. (1 1)

1
(kss - ; ess)x - kxs,s = 0 (12)

The solution for f,; is not unique. Some possible choices are :

(b1)
1 1
fxx=0;fxs=—<yxs—jexx,s dx>= __J"ldx;
a a

1
f;s = Zes:+J‘f:rs,s dx. (133)

Here, A = e,,;— 7. is the geodesic curvature of the deformed generators. In the case of
small deformations,  — w, the normal displacement (deflection).

(b2)
= 1 ( J‘ ds> . - 0 '
f;cx e ; €xx — | Vus,x ’ f;cs =V,

1
f:\‘s =Eess- (13b)

In the case of small deformations, ¥, — ¢,, the circumferential rotation.
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(b3)

i 1 1
fxx = aexx ’f:rs = E}’xss f;'s = Eess'}'j?xs,s dx (130)

(b4)

1
fJ.rx = 5 (exx - jyxs,x dS) + J'f;cs,x ds;

1
f;cs m=o— 2 ess,x dS; f:u = 0. (l3d)

All of the choices are equally correct and the differences are absorbed in 5. Con-
siderations in making the “‘best” choice for a given class of problems are discussed in
Section 2.2.

(c) Spherical shells. Here, B = 0, so that

f;ﬂ = bﬁeaﬂ .

(d) Cylindrical bending of cylindrical surfaces, including the nonlinear bending of
curved beams. Here, k., = k,, = ., = ., = 0. There is no dependence on x. In this simple
setting, the geometrical interpretation of y is apparent. Let r(s) be the circumferential radius
of curvature of the shell (or beam). Then, as in case (b), take, for small strains,

I
kss = ‘pys:+"ess-
r
It is easy to see that, in this case,  , = ¢, where ¢ is the rotation of cross-sections. Hence,

Y= f ¢ ds = “integral rotation function”.

This simple interpretation emphasizes the difference between i and its linearized versions.
In fact, for the variation from any deformed configuration :

1
3y, = 8¢ = oW, + -0, (14)

where the normal and tangential displacements are measured in the current normal and
tangential directions. If, for example, 5, = 0 (normal motion) or is neglected (as in shallow
shells), then 8y = ow, and y describes the path of a material point. It is, in general, unequal
to w but approaches it for small displacements. The rigid body rotation of a straight bar is
depicted in Fig. 1, with w and ¢ shown. The difference is obvious. It is further emphasized
in Fig. 1b.

It should be borne in mind that k,; are not necessarily equal to the “bending strains”
K.; which appear in the constitutive relations, nor are they equal to the changes in the
physical curvatures by, K,z are usually related to k,; by terms of the bley; type. Of special
note is the Sanders—Koiter theory with

Ky = kyp+ 5(17239;1 + bﬁeoa)- (15

The constitutive relation n* = dU/de,; needs qualification as to which of the possible
bending strain measures are held constant, but all possible n* differ by b2m" terms (which
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(b)

Fig. 1. Cylindrical motion—examples. {(a) Rotation of a rod (¢ = ¢, ¥ = cs). (b) Deformation of a
curved beam (¢ = ¢, § = 1¢s%).

are of no major significance) and can be converted from one to the other. This study uses
the measure

ou

nf = s
ae%g ¥

(16)

with i being held constant.
Using the well known expression for the Gauss compatibility equation in the case of
small extensional strains—see, for example, Danielson (1970)—the expression for IT, is

I, = f f {U—F1676" (€aglys + baghiys + Hupk,s) — Kei]} A+ P, an
A

where k,; are expressed in terms of y and e, Treatment of the external potential P is
deferred to the next section.

If e, are set equal to zero in all the terms of eqn (17), then the resulting IT, (¢, /) can
be used for the (almost) inextensible analysis of shells. n*f become reactive forces, obtainable
from separately derived equilibrium equations, e.g. eqns (6.15) and (6.16) of Koiter (1966).

In some problems involving multiple deformation scales, such as small deformation
superposed on large, the quadratic strain gradient terms S}, B4, in the Gauss equation L,
[eqn (2.3) of Danielson (1970)] can be retained until after its introduction into IT,. Only
then is I, scaled, retaining quadratic terms in the superposed variables, some of which are
multiplied by initial deformation (or stress) parameters. The addition of the above terms
is usually of little practical importance, since their effects are small compared with other
terms. However, these terms can be of use in special bifurcation problems with strong
directional effects, such as may arise in long cylindrical shells (see discussion on long tubes
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in Part IT). This topic will not be pursued further in the present paper. For additional
discussion, see remark in Section 4(d) of Part II.

2.1. Shells of weak curvatures

These are shells having principal radii of curvature R;, such that L/R; « 1, where L is
the size of the shell or any deformation length measure on it and R, is any radius of curvature.
Shallow shells are included, as well as all shells having /ocal deformation processes. The
usual approach to analysis of these shells has been the F~-w formulation, where F denotes
the stress function and w the normal displacement. This formulation is based on neglecting
the tangential displacement terms v,/R compared with w, in the expressions for the
rotations, thus leading to k,5 = w/,4, which is the DMV approximation. Theories and papers
based on this formulation are abundant, for example : Alumyae (1949), Libai (1962), Koiter
(1966), Pietraszkiewicz (1989), and many more. In fact, Libai (1962) replaced w with a
curvature function, thus allowing for stronger nonlinearities. However, the retention of the
assumption on the tangential displacements limited the scope of its use. For a more detailed
discussion, see Koiter (1966), section 10.

In the present formulation, the geometrical restrictions imposed by L/R; « 1 justify
the suppression of the extensional strain terms e,5/R in the Codazzi equations, leading to
k.5 = Wl In the Gauss equation K = O(R™?) = 0 can be used, but otherwise, all terms
involving both e,; and y are retained. The two approaches lead to equations which are
formally similar (with i replacing w) but relate to different physical quantities. The fact
that approximations are made on the extensional strains rather than tangential displacements
facilitates the application of the present theory to large-displacement, large-rotation analysis
(provided that the extensional strains are small). This is in addition to other advantages
offered by the mixed variational approach. In the case of small displacements, i can be
identified with w.

Treatment of these shells in the literature is quite extensive and well developed. They
have been used in a wide variety of shell problems, ranging from local bending problems to
nonlinear membranes [the Foppl (1907) problem]. Consequently, their treatment in this
paper should be regarded as a prototype example for the methodology and not as an end in
itself. Using partial integrations, I, reduces in this case to

I12 = JL [U-—fgaysﬂa(erzﬁ+ba/3'/j—'%w.all’,ﬂ)|y6] dA+PS+PB (18)

Here, P and Py are surface and boundary potentials, respectively. See below for details.
Consider variations 7, and w in the normal and tangential displacements from a
current (deformed) configuration. Then
ey = 3(00,|5+ 60gls) — (bup +kap)OW. (19)
In the weak curvatures approximation, 6w = 6y, ok,; = 6|5 Thus,
6eaﬂ = %(éﬁulﬂ'i'éﬁﬂla)'—(baﬁ+llllarﬂ)6l//' (20)
Let p? and p be tangential and normal loadings (in the deformed directions). To

incorporate p? into the functional, 7#** is defined to be any particular symmetric solution of
the equations 7|, + p# = 0. Then the virtual work of the surface becomes

P, = —” (pPov,+ pdw) dA
A

= _ ” (A% 5,5+ [AF (bog + W 1ap) + P10V} dA + LL A Sipv, ds, (21)
A
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where v, = &,5 duf/ds are the components of the unit normal to JL in the tangent plane.
Since e, are independent fields, the coefficients of de,; in 11, must vanish. This yields

oU
6e,,,, v

= 1P = ¢S | s+ AP 22)

Equation (22) both defines n*® and expresses n* and e, in terms of f. It is noted that
elimination of f from eqn (22) would yield the tangential equilibrium equations, so that f
is a stress function as alleged. The use of eqn (22) for the stress resultants and associated
equilibrium equations is generally accepted by shell practitioners as an integral part of the
weak curvatures approximation of nonlinear shell theory. See, for example, Koiter (1966),
sections 10 and 11 and his equations (10.3), (11.48), etc. In the case of (almost) inextensional
deformations, eqn (22) is no longer valid since ¢,5 = 0, but then its deletion from eqn (18)
facilitates its use for direct inextensional analysis in terms of Y and f, as explained before.
Back substitution of e,s(f) into eqn (18) yields the modified functional

IT; = II5(f, ¥) + Pp+ Ps, (23)

where IT; denotes the surface integral in IT,. The usefulness of IT, is limited by the implicit
occurrence of displacements in P;. However, this difficulty is removed next.

One of the objectives of this paper is to develop a “mixed” principle in which n* and
associated quantities are put in a “complementary” form, whereas m* and associated
curvatures retain their regular form. As is well known, the admissible stresses in comp-
lementary principles must a priori satisfy the equilibrium equations and stress boundary
conditions. Consequently, any potentials associated with the applied loads are eliminated
from the principles.

With this in mind, the following steps are now taken:

(a) Partial integrations are performed on the —f&*c¥e,; terms. The resulting —n*e,;
terms are joined with U to form a mixed energy U} defined by

oU
Ur(fi¥) =U— —ey = U,~UY, (29
58“5

where U, is the bending energy and U is the complementary energy of the force resultants.
(b) The admissible n*#, defined by eqn (22), are henceforth required to satisfy a priori
the equations n*%y, = T* on 0L,, whereas the admissible k,; (and associated ) are required
to satisfy a priori the appropriate kinematic conditions on dL,. (The latter are related to
changes along the boundary in normal and twisting curvatures.)
(c) The kinematic boundary conditions are assumed to be homogeneous. (Subsequently
this condition will be relaxed).

Based on the above considerations, the following mixed functional is defined :

m*(Ly) = fL ([U% = (bogh — Y a0 5)1 dA + P*

= [I*+ P%+ P%. (25)

Here, n*# is as defined in eqn (22), IT* denotes the internal functional (defined by the surface
integral above), and P* is a mixed external functional consisting of a surface portion P¥
and a boundary portion P}.

To obtain the Euler-Lagrange equations of the variational equation IT* = 0, use is
made of the formula
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J j £76" (RogJ |ys — Rgulyo)) dA = fﬁaeaﬁ;yf— Rogd )b ds

for any tensor and scalar functions R,; and J, respectively. Proceeding with the calculation
of oIT* the result is:

o= J L { =M p+ 1" (bug +ug) — PPV 510U — 6767 Agl,50 f} dA

+£ [(T,j‘//’ﬂ + Q‘Bvﬁ)ﬁlﬁ — maﬁ(S{//!,gUa + (Aaﬂ’yéf— Auﬁéj:,,)as”},“] dS. (26)

In the above, m* = dU/0k,g, T* = n*Pp,, Qf = m*¥|, and v, are the components of the unit
normal to the boundary line. Also, 4, is defined by

Aaﬁ = €4 + baﬂ'l’ - %d’,aw,ﬂ' (263)

For interpretive convenience, consider a local, pseudo-Cartesian coordinate system
(n,s) along a boundary, with ! =n, > =5, 4, =0, A, = 1, v, = 1, v, = 0. In this case, the
boundary terms of dIT* reduce to

i;? (" + 1Y+ Q" +m5)oY — ™Y,

- (2Asn,s - Ass,n)af_ Assaf:n] ds + <Asn5f> - <mm5¢>' (26b)

Some notes on the boundary terms are as follows:

(a) The {---> terms result from integration by parts along L and denote jumps on
the integrands, if any.

(b) The nonlinear terms T#y z6y and p*y 6y reflect the intrinsic formulation, since
both T” and p” rotate with the deformation.

(c) Intrinsic kinematic quantities associated with ¥ and ¢, are the normal curvature
change x, = ¥, and twisting curvature change x,, = ¥ ., along éL. If the boundary line is
fixed, then k, = 0 (and 6y = 0). If it is clamped, then k,, = 0 (and oy , = 0).

(d) The required homogeneous conditions on parts of the boundary 4L, where
and y are not specified, are the vanishing of bending moment m" (coefficient of dy ,) and
effective shear force V™ (coefficient of dy). Corresponding nonhomogeneous conditions are
the specification of #,, and V”.

(e) On parts of the boundary L,, where forces 7% are specified, of = df, = 0.

(f) Homogeneous kinematic conditions on parts of the boundary dL,, where forces
are not specified, are the vanishing of the coefficient functions:

K;=24,,~A,,=0 and A,=0.

If, in addition, = 0 along 0L,, then A, = e and the coefficient functions reduce to the
geodesic curvature change i, and extensional strain &, of the boundary line. Thus, a
fixed boundary line has the conditions K| = A, = ¢, = 0. Corresponding nonhomogeneous
conditions are the specification of K, and A4,,.

{g) In the case of small finite displacements and moderate rotations at the boundary,
¥ ~w i, ~w, and

Aaﬁ == eaﬂ+baﬁ¢’—%l/l.al/’,ﬂ > %(va‘ﬂ"{"vﬂlu)a (260)
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where v, are the displacements in the tangent plane. The corresponding boundary term
reduces (after partial integration) to § v T? ds. Homogeneous kinematic conditions require

the vanishing of v,, whereas nonhomogeneous conditions involve the specification of z;,,.
Consequently, the variation of the external potential for nonhomogeneous boundary
data is

SP* = — J L (p+1PY )0y dA—§(ﬁn5¢—m""5¢,n
+ K6 f—A,0f,) ds— (A0 >+ sy, (27)

The precise form of P* in the case of complicated forms of external data is rarely
required. In most practical applications, the variation 6P* is used directly. In many
problems, the boundary conditions are homogeneous, except for applied forces in the

tangent plane at the boundary and normal pressure. In these cases, 6P* = — J‘L poYdA,

The Euler-Lagrange equations for the variational principle I1* = 0 can finally be
written as follows:

InA:
m* |+ 1 (b +Ylp)+p =0 (normal equilibrium) (28)

&P (e,p+ b — 3 ¥ Pls = 0 (Gauss compatibility) 29

with m* = dU|0k,g, ks = Wl and n? and e,z expressed in terms of f (and ¥) by eqn (22).
On JL, specify

(1) Either y (admissibility requirement) or effective shear force V" = TPy ;+m™|,
(2) Either y, (admissibility requirement) or bending moment #™ = m™
(3) Either T? (admissibility requirement) or

R, =24,,— Ay, and A, = A,, (in the general case)
1, and &, (if ¥ is specified)

7, and 4, (for small, finite edge deformations). (30)

To these are added jump conditions along the boundary, as described before.

The quantity IT* is indeed a mixed functional, since it contains a mixed energy with a
mixed external functional and also contains mixed ‘“‘stress-rotation” terms. The latter
appear in other functionals, too. See, in particular, those based on the Karman-Marguerre
theory of shallow shells: Shih-Ning (1963), Huang (1973) and Gass (1975). The present
functional has, however, a much wider scope: it is valid for unrestricted displacements
(subject, of course, to the small-strain approximation and the restrictions of weak cur-
vatures) and it contains nonlinear boundary conditions in terms of strains and curvatures,

The development of IT* for shells of weak curvatures was also intended to serve as an
example and prototype for the development of similar principles for other shell systems.
For this reason, more details were given in the analysis.

2.2. Circular cylindrical shells

The cylindrical shell can serve as a prototype for “quasi-shallow” shells, where K = 0
but the weak curvatures assumption, L/R « 1, is not necessarily satisfied, since the shell
is not shallow. If “bending theory” dominates throughout the shell, then f,; is O(¢/R)
compared with k,; and can be neglected ; here ¢ is the shell thickness. In such cases, the
results of Section 2.1 can be used. However, in a large number of cases, this assumption is
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not uniformly valid throughout the shell. In typical cases, bending dominates over a
part of the shell, membrane theory, with k,; = O[(1/R)e,s], over another part, and mixed
situations with directional effects are quite common. In fact, some of the difficulties associ-
ated with DMV theory can be traced to this. Consequently, a uniformly valid representation
of k,; must incorporate f,4. For circular cylindrical geometry, eqn (17) becomes

1
I, = J:l‘ [U‘f(; kxx + €55t Cosxx — Vxsixs +kxxk,_, -*kgs):l d4+P, (31)
A

with k.5 = ¥ 5+ /.- As explained before, f,; are not unique. In making the best choice of
J=s for a given class of problems, it is important to keep f,5 to be of the order of the
extensional strains O (g). A useful guideline is the expected ratio of ““differentiation lengths,”
u= L,/L, for the given class. In the usual case, u = 0(1) and then any choice from eqns
(13) is acceptable. However, care must be taken in cases with strong directional effects. If
u > 1 (asin long tubes and semi-membrane theory), then choices (b) or (d) are appropriate.
If 4 « 1 (edge effect problems), then (a) or (c) must be chosen. In complicated problems,
(b) or (c) should be used, since the first derivatives of the strains are still small.

Assuming that f,; = O(e) and invoking the small extensional strain approximation,
one can neglect the quadratic terms in £,z in the Gauss equation, compared with the linear
extensional strain terms. Then IT, reduces to

1 1
HZ = J:[ [U““f<a ‘!’,xx + Ef:vx + €xx,s8 + Ess,xx = Vxsxs + '//,xxlll,ss - fr.\' + l/’!ssf;cx)il d4 + P
A
(32)

In the above, the term ¥ .. £, is O(g) compared with ¥ ,, and is dropped. The term
¥ .. frs 18 O(€) compared with either the linear extensional strain terms or y%;, depending
on whether y ,, is O(¢) or O(1). It is O(e"?) compared to them if § ,, is O (¢"/?). Hence, it
may be dropped, too. The underlined term ¥ f,, is O (¢) compared to ¥, if 4 <O(1), but
should be retained if both u » 1and  ,, = O (1) hold simultaneously (see Part II). Excluding
this special case at present, this term is also dropped.

Compared to the weak curvatures case, f,; terms are also included in the bending
energy U,. However, only mixed terms ¢4 f,; need be retained, since quadratic terms in f,5
are O[(t/r)*] compared with terms in extensional energy, and can always be neglected. The
calculation of U (using partial integrations on 6f,; as necessary) yields

oU = nuﬂ(eaﬁs l/1)66::t13 _muﬁ('//,aﬁa eaﬂ)&/’,uﬁﬁ (33)

with the coefficient functions defined to be the force and moment resultants, respectively.
The cross-dependence of n,5 and m,; on Y and e,g, respectively, comes out of f,5. Constitutive
simplifications may be used according to the problem at hand. As in the general procedure
outlined in eqn (3) and as in the case of shells of weak curvature, eqn (22), the coefficients
of de,4 in the variational equation 8IT, = 0 are to be put equal to zero. This serves both to
define #* in terms of fand  and to eliminate e,z from IT,. The resulting expressions should
depend on the specific choice of £, in eqns (13). To be more specific, eqn (13a) is chosen
for the remainder of this section, with f,, = 0 (for another choice of f,, which is useful for
long tubes, see Part II, Section 1). With f,, = 0 and with the order-of-magnitude analysis
as above, the expressions of #n*f in terms of f are identical to those of eqn (22), but the
constitutive form of n* is now

n? = 0¥ (e,5) +n¥ (). (34

Details depend on the form of U for the specific orthotropic material.
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Proceeding now as in the case of weak curvatures, a mixed functional II* can be
constructed. Its form is identical to that of eqn (25). For the specific case of the circular
cylindrical shell and the particular choice of fg, it becomes

II* = J'J‘ I:U,",‘,-Fn%(%q/;— 2./,>+%nxxwi+nxs‘/l'xw,,:| dA+ P*. (35)
4

Consequently, the admissibility requirements, Euler-Lagrange equations, and boundary
conditions appear to be formally identical to these in the weak curvatures case. However,
the modified constitutive expressions such as eqn (34) are to be used for m*® and »n*, and
k,p include f,; whenever they are used in the boundary conditions. For an example of the
boundary conditions in a bent tube, see Part I1.

3. CONCLUDING REMARKS

The analysis can be extended to more general quasi-shallow shells without undue
difficulties. Spherical and other shells of slowly varying curvatures can use similar
procedures. It may be concluded that a “curvature function” embedded in a mixed vari-
ational principle shows promise as a tool for large-rotation shell analysis. However, this is
limited to cases in which a function ¥ which solves the homogeneous Codazzi equations
can be found. The classes of shells discussed here are respectable but not exhaustive. Other
cases may be added (for example, a trigonometric series form may be used for shells of
revolution) but a general solution has yet to be determined. Alternatively, other forms of
the compatibility equations may be investigated, but this is beyond the scope of this paper.
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